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This paper deals with the numerical solution for the steady state combined conductiveeradiative heat
transfer in an anisotropic participating medium within the irregular geometries using the blocked-off
method in Cartesian coordinates. The walls of the enclosures were considered to be opaque, diffuse and
gray having specified heat flux and temperature boundary conditions. The finite-volume method has
been adopted to solve the energy equation and the discrete ordinates method has been employed to
solve the radiative transfer equation. The radiative and radiativeeconducive models were validated by
comparison with the results of specific test cases taken from the literature. The results showed very
satisfactory predictions compared with the benchmarked results. As the degree of enclosure complexity
(with curved or skewed walls) increased, finer grids were required. Based on this method, the effects of
various influencing parameters such as the conductioneradiation parameter, scattering albedo and
extinction coefficient have been considered.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

The problem of radiation coupled with other modes of heat
transfer is encountered in many engineering applications. The
combined conductiveeradiative heat transfer has numerous engi-
neering applications such as heat transfer through the semi-
transparent, porous materials, multilayered insulations, glass
fabrication, industrial furnaces, optical textile fiber processing,
fibrous insulation, and etc. The constitutive medium in themajority
of these systems actively participates in the radiative transfer due
to the absorption, emission and scattering of radiation.

Several numerical methods have been developed for the radia-
tive heat transfer problems, including the Zonal method, the Monte
Carlo method, the spherical harmonics method, the Discrete
Transfer Method (DTM), the Discrete Ordinates Method (DOM), the
Finite-Volume Method (FVM), the Finite Element Method (FEM),
and the Ray-Tracing/Nodal-Analyzing Method (RTNAM), all of
which except the RTNAM are classical and well known. Therefore,
the advantages and disadvantages of these methods are not
mentioned here. The RTNAM was first proposed by Tan and Lalle-
mand [6] and has recently been developed by several researchers
iri), mansouri@alum.mit.edu
nejad).

son SAS. All rights reserved.
[7e9]. Its advantage is that the radiative intensity does not need to
be dispersed along the space coordinate when solving the radiative
transfer equation and the solid angle is not dispersed but is directly
integrated. Thus, the false scattering and the ray effect will not exist
in this method. Therefore, the theoretical accuracy of this method is
high. The disadvantage of this method is that it is very difficult to
solve the radiative heat transfer in a multi-dimensional medium.

Although the Zonal and the Monte Carlo methods are often
considered as the most accurate ones, these methods have great
difficulties in treating the combinedmode of heat transfer and their
computational requirements. Hence, none of themethods currently
available can be considered as the best one for all the problems.
Among the other methods, the discrete ordinates method has
received an increasingly high attention because of its efficient
integration with different methods of solving the energy equation
such as FVM and FEM. This method is a simplified, but attractive,
method to solve the radiative transfer problems and provides
a good compromise between the accuracy and the computational
economy. This methodwas originally formulated by Chandrasekhar
[10] and developed by Lathrop and Carlson [11] and Lathrop [12].
Fiveland [13,14] presented the general outlines of the method and
formulated an accurate method of discrete ordinates of the first
order based on the method of finite volumes for two-dimensional
and three-dimensional enclosures. Ramankutty and Crosbie [15,16]
presented amore recent and extensive review of the DOM and used
this method to formulate the so-called modified discrete ordinates
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Nomenclature

Ax, Ay areas of the control-volume faces normal to the x and y
directions (m2)

a0 asymmetry factor
F,Fx,Fy blocked-off variables in center, x and y direction
G incident radiation (W m�2)
G* dimensionless incident radiation
k thermal conductivity (W m�1 K�1)
M number of discrete directions
n refractive index
n!w outward unit vector normal to the wall
N number of different direction cosines
NCR conductioneradiation parameter
Ib black body radiation intensity (W m�2)
I radiation intensity (W m�2)
Imi;j intensity at grid node i,j and in m direction (W m�2)
Q dimensionless heat flux value
q!R radiative heat flux vector (W m�2)
r!w�T temperature specified part of boundary
r!w�F heat flux specified part of boundary
s! geometric path vector
Smi;j source term
SC,SP constant of linearization of energy source term
T absolute temperature (K)
Tref reference temperature (K)
V volume (m3)
w weight of angular quadrature

x, y x, y coordinates
X, Y dimensionless coordinates

Greek symbols
b extinction coefficient (m�1)
u scattering albedo
h fraction of radiation to total heat flux
3w wall emissivity
ss scattering coefficient (m�1)
mm,xm x and y cosines of s!m direction
gx, gy spatial differencing weights to x and y directions
4 scattering phase function
k absorption coefficient (m�1)
q dimensionless temperature
s StefaneBoltzmann constant (W m�2 K�4)
U solid angle (sr)
G tolerance

Superscripts
* dimensionless variable

Subscripts
in upstream
CR conductioneradiation
R, C, T radiation, conduction and total
out downstream
ref reference
w wall
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method. Sakami and Charette [17] applied the modified discrete
ordinates method to two-dimensional enclosures of the irregular
geometries.

Solving the radiative transfer equation (RTE) and its applicability
to the irregular multi-dimensional problems is always a chal-
lenging task. The irregular geometries may be modeled simply
using the non-orthogonal grids. However, it is desirable to formu-
late a solution procedure to model the irregular geometries using
Cartesian coordinates formulations in order to avoid additional
complexities arising from the non-orthogonality of the computa-
tional grids. Sanchez and Smith [1] discussed the radiative
exchange of a square geometry with a square obstacle in themiddle
using the discrete ordinates method for a non-participating media.
In the participating media, Chai et al. [2,3] discussed different
possibilities of solving the radiative transfer problems in the
irregular structures using the discrete ordinates method, the finite-
volume method and the Monte Carlo method. They implemented
the blocked-off procedures in the discrete ordinates method [2]
and the finite-volume method [3] for different kinds of irregular
structures.

Byun et al. [4] investigated the radiative heat transfer in the
complex geometries using blocked-off, multiblock, and embedded
boundary treatments. Asllanaj et al. [5] proposed a new Finite-
Volume Method (FVM) based on a cell vertex scheme, associated to
a new modified exponential scheme to solve the radiative heat
transfer problem in 2-D irregular geometries containing absorbing,
emitting and non-scattering gray media.

Many researchers studied the two-dimensional coupled radia-
tive and conductive heat transfers in a participating medium. In
rectangular enclosures, Yuen and Takara [18] solved the radiation
problem using a generalized exponential integral function and the
coupled problem by one empirical additive approach. Also, Kim and
Baek [19] solved the same problem using the DOM with diamond
spatial scheme for the radiative part of the problem while the
conductive term was discretized using the central difference
scheme. Lee and Viskanta [20] compared the solutions of the
combined conductiveeradiative heat transfer in the two-dimen-
sional semitransparent media using the finite-volume method for
the energy equation coupled with the DOM and diffusion approxi-
mations for the RTE. Mishra et al. [21] solved the transient conduc-
tive and radiative heat transfer in a two-dimensional rectangular
enclosure filledwith an absorbing, emitting and scatteringmedium.
The radiative transfer equation was solved by the collapse dimen-
sion method while the energy equation was alternatively solved by
the Lattice BoltzmannMethod (LBM) and the FVM; the performance
and the computational cost of the LBMand the FVMwere compared.

Mahapatra and Mahapatra [22] studied coupled radiative and
conductive heat transfer in an isotropic scattering square enclosure
using the DOM. The enclosure comprised isothermal vertical walls
and insulated horizontal walls. Later, Mahapatra et al. [23] numer-
ically solved the same problem by the development of a hybrid
method combining the spherical harmonics method and the DOM.
The industrial heat transfer problems at elevated temperatures,
such as burners, kilns, boilers and combustion chambers, etc.,
always deal with the irregular geometries and the radiative heat
transfer plays a predominant role in these industrial applications.
The combined conductive and radiative heat transfer in the irreg-
ular geometries has been studied by some researchers. Sakami et al.
[24] used a modified discrete ordinates method based on the
incorporation of directional ray propagation relations within the
cells with triangular grids and they used the finite element tech-
nique in the conduction part of the coupled problem. Rousse [25]
and Rousse et al. [26] used the finite-volumemethod for solving the
RTE and the finite element method for solving the energy equation
in the solution of conductioneradiation and convectioneradiation
problems in two-dimensional cavities and canals.
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Ismail and Salinas [27] used the discrete ordinates method with
a multi-dimensional spatial scheme for the radiative part and used
the finite-volume method for solving the energy equation. Asllanaj
et al. [28] solved the transient radiation andconductionheat transfer
in a gray absorbing-emitting medium in a two-dimensional
complex-shaped domain using the unstructured triangular meshes.
The RTE was solved by using a new FVM based on a cell vertex
scheme and associated to a modified exponential scheme. Luo and
Shen [29] used the ray tracing-node analyzing method to solve a 2-
dimensional transient coupled heat transfer in a rectangular semi-
transparent medium. The transient energy equation is discretized
using the fully implicit finite difference method and the radiative
source term is expressed using the radiative transfer coefficients.

A limited number of research works have been carried out to
analyze the coupled conductive and radiative heat transferwithin the
multi-dimensional irregular geometries with the blocked-off proce-
dure and in almost all of which, the combined conduction and radi-
ation heat transfer problems have been solved within the enclosures
comprised of isothermalwalls.Moreover,most of the previousworks
on the radiative heat transfer considered only isotropic scattering or
non-scattering in the semitransparent medium.

Here, we present a solution procedure for the combined con-
ductiveeradiative heat transfer problem in the irregular geometries
having gray diffusive walls; containing gray, absorbing, emitting
anisotropic scattering medium using the blocked-off finite-volume
method inCartesiancoordinates. Thewalls of the enclosures canhave
either the specified heat flux boundary conditions or the specified
temperature boundary conditions. The energy equation is solved
using the FVM taking the divergence of the radiative heat flux vector
as the source term. The RTE is solvedby the discrete ordinatemethod.
The predicted results are validatedwith the results obtained from the
literature and the effects of the main thermophysical parameters on
the temperature and heat flux values are demonstrated.

2. Problem formulation

The steady state conservation of energy equation in the absence
of convection and heat generation is expressed as:

k

 
v2T
vx2

þ v2T
vy2

!
� V$ q!R ¼ 0 (1)

assuming constant properties in the two-dimensional Cartesian
coordinates system. Where k is the thermal conductivity and V$ q!R
is the divergence of the radiative heat flux given by

V$ q!R ¼ k

0
@4pIbðTð r!ÞÞ �

Z
4p

Ið r!; s!ÞdU
1
A (2)

where, k is the absorption coefficient, Ið r!; s!Þ is the radiation
intensity at the position r! and in the direction s!, IbðTð r!ÞÞ
¼ n2sðTð r!ÞÞ4=p is the black body radiation intensity and n is the
refractive index of the medium and is equal to one in this study.

To obtain the radiation intensity field and V$ q!R, it is necessary
to solve the RTE. The RTE for an absorbing, emitting and scattering
gray medium can be written as ([30])

ð s!$VÞIð r!; s!Þ ¼ �bIð r!; s!Þ þ kIbð r!Þ

þ ss
4p

Z
4p

Ið r!; s!0Þ4ð s!0
/ s!ÞdU0

(3)

in which ss is the scattering coefficient, b ¼ kþ ss is the extinction
coefficient and 4ð s!0

/ s!Þ is the scattering phase function for the
radiation from incoming direction s!0

and confined within the solid
angle dU
0
to scattered direction s! confined within the solid angle

dU. In this paper, linear-anisotropic scattering is considered, in
which the phase function for linear-anisotropic scattering is:

4
�
s!0
/ s!� ¼ 1:0þ a0

�
s!0
$ s!� (4)

where �1 � a0 � 1 is an asymmetry factor. Values of the parameter
a0 are þ1, 0 or �1 whether the scattering is forward, isotropic or
backward, respectively.

The boundary condition for a diffusely emitting and reflecting
gray wall is

Ið r!w; s
!Þ ¼ 3wIbð r!wÞ þ ð1� 3wÞ

p

Z
n!w$ s

!0<0

I
�
r!w; s

!0�

�j n!w$ s
!0jdU0

; n!w$ s
!

> 0 (5)

where, 3w is the wall emissivity, IbðTð r!wÞÞ is the black body radia-
tion intensity at the temperature of the boundary surface and n!w is
the outward unit vector normal to the surface. Since the radiative
transfer equation depends on the temperature field through the
emission term ðIbðTð r!ÞÞÞ thus it must be solved simultaneously
with the overall energy equation. Here, the discrete ordinates
method is used to solve the RTE.

3. Numerical method

In the discrete ordinates method, the radiative transfer equation
is changed by a discrete set of M coupled differential equations for
a finite number of directions s!mðm ¼ 1;2;.;MÞ. Integrals over
the solid angles are changed by a quadrature of order M, yielding�
s!m$V

�
I
�
r!; s!m� ¼ �bI

�
r!; s!m�þ kIbð r!Þ

þ ss
4p

XM
n¼1

I
�
r!; s!n�4� s!n/ s!m�wn (6)

in which wn is the quadrature weight of the direction s!n. In the
present work, the level symmetric quadratures, SN, have been used
where M ¼ N(N þ 2). In discrete ordinates, the boundary condition
expressed by Equation (5) is discretized as

I
�
r!w; s

!m� ¼ 3wIbð r!wÞþ ð1� 3wÞ
p

XM
n¼1; n!w$ s

!
n<0

I
�
r!w; s

!n�

��� n!w$ s
!n��wn; n!w$ s

!m > 0 (7)

and the divergence of the radiative heat flux is expressed as

V$ q!R ¼ k

 
4pIbð r!Þ �

XM
n¼1

Ið r!; s!Þwn

!
(8)

Spatial discretization of the discrete ordinates equations is carried
out using the finite-volume approach. Equation (6) is integrated
using the Gauss divergence theorem over a typical control volume
(Fig. 1) in which the right-hand side of Equation (6) is assumed to
be constant over the control volume. For a two-dimensional
Cartesian coordinates system and for a direction s!m with direction
cosines mm and xm, integrating yields the discretized equation

jmmjAx

�
Imx;out� Imx;in

�
þ ��xm��Ay

�
Imy;out� Imy;in

�
¼
�
�bImi;jþSmi;j

�
V (9)

where,

Smi;j ¼ kIb i;j þ
ss
4p

XM
n¼1

Ini;j 4
�
s!n/ s!m�wn (10)
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Fig. 1. A typical control volume.
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in which, Imi;j is the intensity at the grid node (i,j) and in direction

s!m. The subscripts of the cell face intensities represent the direc-
tion (x or y) and the upstream (in) or downstream (out) through the
face. The radiation intensities at the cell faces are unknown and
must be related to the radiation intensities at the neighboring grid
nodes. Most often a linear relationship is chosen as:

Imi;j ¼ gxI
m
x;out þ ð1� gxÞImx;in ¼ gyI

m
y;out þ ð1� gyÞImy;in (11)

inwhich gx and gy are the spatial differencingweights to the x and y
directions, respectively. The standard diamond difference scheme
(gx ¼ gy ¼ 0.5) which is commonly used and has a good accuracy, is
unstable and gives oscillatory and negative intensity solutions
especially when there is a significant difference between the radi-
ation intensities on adjacent faces of the control volume for the
treatment of the blocked-off irregular geometries [31]. Therefore,
we choose the step scheme (gx ¼ gy ¼ 1.0) which is simple,
convenient, stable and ensures positive intensities. The final dis-
cretized equation for a nodal point i,j can be obtained by applying
the spatial differencing equation to Equation (9) as follows

Imi;j ¼
jmmjAxImx;in þ

��xm��AyImy;in þ Smi;jV

jmmjAx þ
��xm��Ay þ bV

(12)

The numerical solution of Equation (12) is described in [13,14,30].
To solve the coupled radiationeconduction problem, the energy

equation is converted to a non-dimensional form, presented in
Appendix A.
4. Blocked-off method

In order to avoid the complexity of treating the non-orthogonal
grids, it is suitable to formulate a procedure to model the irregular
geometries using the Cartesian coordinates. The combined
conductive and radiative heat transfer in the irregular geometries is
modeled using the blocked-off method commonly used in the CFD.
The blocked-off procedure consists of drawing rectangular nominal
domains around the given physical domains (Fig. 2). The new
domain contains active and inactive regions. The active regions,
where the solutions are sought, are unshaded in Fig. 2(b). The
shaded regions outside the real domain are called the inactive or
the blocked-off regions, where the solutions are not meaningful
and thus are not sought and are retained to form the nominal
domain. In the geometries with inclined and curved boundaries,
the boundaries are approximatedwith ladder-like lines as shown in
Fig. 2(d). This enables the modeling of irregular geometries with
computer programs in Cartesian coordinates. For the inclined or
curved irregular geometries, a relatively fine grid can produce
reasonably accurate solutions.

This procedure has been developed for the conductive and
convective heat transfer by Patankar [32]. Then, it was extended to
the two-dimensional radiative transfer problem by Chai [2,3]. Here,
we use the two-dimensional formulation of the block-off method
for the combined conductiveeradiative heat transfer. In order to
distinguish active cells from inactive ones in the standard blocked-
off method, an additional source term is introduced in the energy
and radiative transfer equations ([2,3,32]).

In the present study, we use a new form of the blocked-off
method in which three blocked-off variables are defined instead of
introducing an additional source term for each control volume.
Fig. 2(c) shows how a domain is described in this new form of the
blocked-off method. The whole nominal domain is discretized into
several control volumes. Then, for each control volume (i,j), five
variables, namely the blocked-off variables, have been defined. One
of them is assigned to the center of the control volume denoted as F
(i,j) and the others are assigned to the x and y sides of the control
volume denoted as Fx(i � 1,j � 1), Fx(i,j � 1), Fy(i � 1,j � 1) and Fy
(i� 1,j) (Fig. 2(c)). Indeed, the blocked-off variables only take values
0 or 1. If the center of the control volume is in the inactive region,
the blocked-off variables take the value 1 and otherwise they take
0. Also, the blocked-off variables of the side walls of the control
volume which coincide with the nominal domain take the value 1.
Fig. 2(d) shows the values of the blocked-off variables in the
nominal geometry for a coarse grid. In the numerical methods
section we explain how this variable is used.

The energy equation which is nonlinear is discretized using the
finite-volume method as in Patankar [32]. It is worth noting that
not only the governing transport equations are coupled, but also
their boundary conditions are interlocked. Thus, an iterative solu-
tion is needed.

One can identify the energy equation, as the Fourier conduction
equation with a radiative source term. As the radiative source term
has a strong nonlinearity in the non-dimensional temperature, q,
the source term in Equation (A2) is linearized using Taylor series
expansion around the value of the pervious iteration as

�q4P ¼ SC þ SPq
k
P (13)

where SC ¼ 3ðqk�1
P Þ4, SP ¼ �4ðqk�1

P Þ3, and k and k � 1 denote the
current and previous iteration value of the parameters, respectively.

The procedure of the numerical calculations is as follows:

1. Assume the temperature distributions over the entire medium
and the boundary surfaces with specified heat flux boundary
condition.

2. Solve the RTE using the DOM method for all control volumes
and all directions as follows: For each direction m and for each
control volume (i,j) the radiation intensity is calculated by the
following algorithm:
a) For each control volume (i,j) that F(i,j)¼ 1, if the side wall of

the blocked-off variable have the value of 1, then, the
upstream radiation intensity is calculated by Equation (7)
otherwise they were previously calculated from Equation
(11) in the current or previous iteration.

b) Having the upstream radiation intensity, Imx;in and Imy;in, the
control-volume radiation intensity, Imi;j , is calculated by
Equation (12).

c) The downstream radiation intensity is calculated using
equation (11).

3. Calculate the divergence of the radiative heat flux for the active
region.
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4. Solve the energy equation for the active region to obtain the
temperature qki;j in the medium and walls with the specified
heat flux boundaries.

5. Repeat steps 2e4 until Max

 
jqki;j � qk�1

i;j j
qk�1
i;j

!
< G.

The prescribed tolerance ðGÞ is set to 10�8 in this study.

5. Validation procedure

We have tested the validity of the combined conductiveeradi-
ative heat transfer for a simple geometry for which exact or reliable
solutions is available. Then, we have tested the blocked-off method
for the case of radiative heat transfer in an irregular geometry
before applying the new method to enclosures of the irregular
geometries with combined conductiveeradiative heat transfer. In
this study, the heat fluxes are non-dimensionalized by dividing
them by sT4ref in which Tref is the maximum temperature in the
enclosure.

6. Validation of the combined conductiveeradiative
heat transfer

Consider the combined conductiveeradiative heat transfer in an
enclosure of infinite length with a square cross-section containing
an absorbing, emitting, non-scattering medium (u ¼ 0), in which
the enclosure is in radiative equilibrium and has black walls. The
left wall (X ¼ 0) is at the dimensionless temperature of qb ¼ 1 and
the other walls are at the temperature qother ¼ 0:5. This problem
was solved by Yuen et al. [18], Kim and Baek [19], Ismail and Salinas
[27] and Sakami et al. [24]. For validation, we compared our results
with the results of Ismail and Salinas [27] and Sakami et al. [24].

Fig. 3(a) shows the dimensionless temperature profiles along
the symmetry line (Y ¼ 0.5) for three angular quadratures and
NCR ¼ 0.01. Here we use a uniform spatial grid of Nx � Ny ¼ 21 � 21.
The results, compared with those of Refs. [24, 27] show good
agreement for all the quadratures. The profile for S4 is very close to
the result of Ref. [24] with the same quadrature. Using a higher
quadrature, the profile converges to the results of Ref. [27] with
LC11 quadrature. The results show that S8 angular quadrature gives
satisfying results. Fig. 3(b) shows the temperature distribution in
the medium for the two conductioneradiation parameters. The
results show good agreement with those of Sakami et al. [24] and
Ismail and Salinas [27].

Another test was done for the same problem shown in Fig. 4 in
which the dimensionless total heat flux (radiative and conductive)
on the hot face is given versus the vertical position for NCR ¼ 0.01.
Again, the results show good agreement with respect to those of
Ismail and Salinas and Sakami et al. As NCR decreases, the role of the



X

θ

0 0.2 0.4 0.6 0.8 1

X

0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

θ

0.5

0.6

0.7

0.8

0.9

1

Present 21*21, S4

Present 21*21, S6

Present 21*21, S8

Ismail and Salinas LC11

Sakami et al. S4

Present : S8, Ncr = 1.0

Present : S8, Ncr = 0.01

Ismail and Salinas: LC11, Ncr = 1.0

Ismail and Salinas: LC11, Ncr = 0.01

Salami et al. : S4, Ncr = 1.0

Salami et al. : S4, Ncr = 0.01

a b

Fig. 3. (a) Comparison of solution convergence for different angular quadratures. (b) Comparison of the distribution of the non-dimensional temperatures in the medium along the
symmetry line (Y ¼ 0.5) for two conductioneradiation parameters.

R = 1.0

R =0 .2

0.4

c

s

x

y

Fig. 5. Schematic of semicircular enclosure with inner circle.

H. Amiri et al. / International Journal of Thermal Sciences 49 (2010) 492e503 497
radiation increases and the energy is transmitted deeper into the
medium, producing higher temperature gradients at both faces and
increasing the temperatures near the cold face.

7. Validation of the blocked-off method

To check the performance and accuracy of the present method,
the blocked-off boundary treatment is applied to a semicircular
enclosure with an inner circle containing an absorbing, emitting
and non-scattering medium with b ¼ 1 m�1 (Fig. 5). It is assumed
that the thermal conductivity of the medium is zero (k ¼ 0). The
medium is enclosed by the semicircle and the inner circle is
maintained at a constant temperature of 1000 K. The enclosure
walls are assumed to be cold and black. The spatial grid and ordi-
nate system used here is Nx � Ny ¼ 100� 50 and S10, respectively. A
comparison of the non-dimensional radiative heat flux on the
bottom wall is presented in Fig. 6 which shows that the present
results are in good agreement with the blocked-off FVM of
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8. Results

8.1. Test problem 1

The first test deals with the combined conductiveeradiative
heat transfer in the enclosure shown in Fig. 7. In this problem, we
investigate the effect of various influencing parameters, such as the
extinction coefficient, conductioneradiation parameter, scattering
albedo and anisotropic scattering on the top wall (y ¼ 2) heat flux.
The effects of these parameters have been given in the following
sections. The wall properties and the boundary conditions also are
shown in Fig. 7. For all the cases, we have considered S6 angular
mesh and Nx � Ny ¼ 40 � 40 spatial mesh.

8.1.1. Extinction coefficient (b)
Fig. 8 shows the effect of the extinction coefficient on the total

heat flux and the radiative heat flux fraction h (fraction of radiative
heat flux to total heat flux) over the top wall when the enclosure
contains an isotropic scattering medium with NCR ¼ 0.01 and
u ¼ 0.5. The rise in the extinction coefficient has been contributed
to the rise in both the absorption coefficient and the scattering
coefficient in a proportional manner as NCR and u remain constant.
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Fig. 8. The effect of extinction coefficient (a) on the total heat flux
Fig. 8(b) shows that increasing bmakes the radiation to become the
dominant mode of heat transfer. The rise in the extinction coeffi-
cient when NCR is constant ðaccording to NCR ¼ kb=ð4sT3ref ÞÞ,
decreases the thermal conductivity, k. Therefore, the absolute
conductive heat transfer value is reduced (Fig. 9(a)). Also, as the
extinction coefficient increases, the absolute radiative heat flux
value decreases (Fig. 9(b)) because it increases the radiative heat
resistant by making radiative heat transfer a local phenomenon.

8.1.2. Conductioneradiation parameter (NCR)
Consider an absorbing-emitting and isotropic scattering

medium with b ¼ 2 m�1 and u ¼ 0.5. Fig. 10(a) shows the dimen-
sionless total heat flux of the top wall for various values of the
conductioneradiation parameter when Tref and b are constant. As
the conductioneradiation parameter increases according to
NCR ¼ kb=ð4sT3

ref Þ, conductivity increases and conductive thermal
resistance decreases, so, the absolute value of total heat flux
increases. For points near the high temperature wall, the absolute
total heat flux value becomes considerably higher because they
have a low conduction resistance. Fig. 10(b) shows the variation of h
for various values of NCR. It shows that conduction become the
dominant mode of heat transfer for NCR > 1:0. Fig. 11 shows the
conduction and radiation part of the total heat flux over the top
wall. This figure shows that the radiative heat flux fraction and the
absolute value of the radiative heat flux decreases as NCR increases.

8.1.3. Scattering albedo (u)
The rise in the scattering albedo by keeping the extinction

coefficient constant implies that increasing the scattering coeffi-
cient is accompanied by a decrease in the absorption coefficient.
Fig. 12(a) shows the total heat flux along the top wall for various
scattering albedo values. The dimensionless total heat flux seems to
be sensitive to the scattering albedo but sensitivity to this param-
eter is not so strong in contrast to the effect ofNCR or b. In the case of
pure scattering,u¼ 1.0, according to Equation (2), divergence of the
radiative transfer for the medium vanishes; that is, the energy
equation and the radiative transfer equation get uncoupled but
they are interlocked through the boundary condition. Fig. 12(b)
shows that as the scattering albedo increases, radiative heat flux
fraction increases. As the scattering albedo increases, the fraction of
radiative heat flux emanated from the hot wall and absorbed by the
medium decreases. Thus, the radiative heat flux reaching the top
wall increases (Fig. 13(a)). Also, as the scattering albedo increases,
the effect of radiative heating of the hot wall on distant points
decreases. Thus, the conductive heat flux over the top wall
decreases (Fig. 13(b)).
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8.1.4. Anisotropic scattering (asymmetry factor)
The influence of the asymmetry factor is depicted in Fig. 14

where the dimensionless total heat flux and radiative heat flux
fraction over the top wall is plotted for NCR ¼ 0.001, b ¼ 2 m�1,
u ¼ 0.8 and different values of the asymmetry factor. It is worth
noting that the total heat flux increases as the value of a0 increases,
which means that forward scattering enhances the radiation heat
transfer. So, it increases the absolute total heat flux value. It must be
mentioned that as these figures show, the effect of the asymmetry
factor on the total heat flux and radiative heat fraction is low.
8.2. Test problem 2

For the second problem, we consider the combined condu-
ctiveeradiative heat transfer in a semicircular enclosure with an
internal circle with diffusive and black walls. Figs. 5 and 15 show
the geometry and boundary conditions of the test problem 2,
respectively. This problem has been considered to investigate the
effect of thermophysical parameters, when the heat flux boundary
condition exists as a source of energy input to the enclosure, in
contrast to the previous test problem in which a high temperature
wall was the source of energy. Since the outer semicircular wall is
insulated, the total energy input to the enclosure from the inner
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Fig. 12. (a) Dimensionless total heat flux along the top wall and (b) radiative heat flux fraction along the top wall for various values of scattering albedo coefficients.
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circle must leave the bottom wall. Thus, total energy exiting the
bottom wall is always constant regardless of medium properties.

8.2.1. Extinction coefficient
Fig. 16 shows the effect of the extinction coefficient on total heat

flux and radiative heat flux fraction over the bottom wall. The
medium is absorbing-emitting and forward scattering with
NCR ¼ 0.01 and u ¼ 0.5. For b ¼ 0.01, conduction is the dominant
mode of heat transfer. The absolute value of heat flux attains its
maximum in points which are closer to the inner circle. The
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Fig. 17. (a) Dimensionless total heat flux and (b) radiative heat flux fraction alo
absolute value of heat flux decreases in the farther points from the
inner circle (these point have higher conductive resistance). As the
extinction coefficient increases (conductivity decreases) radiative
heat transfer increases. Thus, the absolute value of heat flux in
points near the inner circle decreases and it increases for points far
from the inner circle. However, when the extinction coefficient
further increases, radiation becomes a local phenomenon and the
radiation problem converts to a simple conduction problem with
a strong temperature dependent conductivity (Rosseland approxi-
mation or diffusion approximation [30]). The profile of total heat
flux looks like that of the conduction dominant mode of heat
transfer.

8.2.2. Conductioneradiation parameter
Fig. 17 shows the effect of the conductioneradiation parameter

on the total heat flux and radiative heat flux fraction along the
bottom wall. The medium is absorbing-emitting and isotropic
scattering with b ¼ 1 m�1 and u ¼ 0.5. As NCR increases, conductive
heat transfer becomes the dominant mode of heat transfer.

8.2.3. Scattering albedo (u)
Fig. 18 shows the dimensionless total heat flux and radiative

heat flux fraction along the bottom wall for various values of
scattering albedo. As Fig. 18(a) shows, the dimensionless total heat
flux seems to be less affected by variations in scattering albedo.
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Fig. 18. (a) Dimensionless total heat flux and (b) radiative heat flux fraction along the bottom wall for various values of scattering albedo coefficients.
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Fig. 19. (a) Dimensionless total heat flux and (b) radiative heat flux fraction along the bottom wall for various values of the asymmetry factor.
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However, the radiative heat flux fraction changes due to variations
in scattering albedo.

8.2.4. Anisotropic scattering (asymmetry factor)
The effect of the asymmetry factor on the total heat flux and

radiative heat flux fraction along the bottom wall is shown in
Fig. 19. Results show that the effect of asymmetry factor is negli-
gibly small in this case.

9. Conclusion

The investigation of combined conductive and radiative heat
transfer within the irregular geometries with absorbing, emitting,
and anisotropic scattering medium has been modeled using the
blocked-off method in a Cartesian coordinates system. In the first
part of this work, the results of the present method were validated
for conductioneradiation in a simple geometry and radiation in
irregular geometries. Compared with the benchmarked results, this
method gives satisfying predictions.

In the second part, this approach has been applied to analyze the
effect of the main thermophysical parameters (conductioneradia-
tion parameter, scattering albedo, and asymmetry factor and
extinction coefficient) on the total, conductive and radiative heat
flux of thewalls. Results show that the magnitude of the ratio of the
radiative heat transfer to the conductive heat transfer should be at
leastunity ðNCR�1:0Þ to requirea radiationheat transfercalculation.
We have also shown that the most important thermophysical
parameters are the conductioneradiation parameter and the
extinction coefficient.

The present paper shows that the blocked-off method can be
used to model the combined conductive and radiative heat transfer
in enclosures with blockage, inclined and curved walls. However, in
the case of enclosures with curved walls or skewed boundaries,
such as Fig. 5, these boundaries need to be treated in a stepwise
fashion and this requires a fine grid to obtain accurate results.

Appendix A. Dimensionless form of energy equation

The dimensionless form of the energy equation (Equation (1)) is
expressed as

v2q

vX2 þ
v2q

vY2 ¼ SR (A1)

where,

SR ¼ ð1� uÞ
NCR

�
q4 � G*

�
(A2)
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The parameters and dimensionless variables are

G* ¼ G=
�
4sT4ref

�
¼
XM
n¼1

I
�
r!; s!n�wn=

�
4sT4ref

�
; q ¼ T=Tref ;

NCR ¼ kb=
�
4sT3ref

�
; u ¼ ss=b; X ¼ bx and Y ¼ by

where u is scattering albedo and NCR is the conductioneradiation
parameter. For Equation (A1), the boundary conditions are

qð r!w�T Þ ¼ qw (A3)

q*T ð r!w�FÞ ¼ q*Tw (A4)

where r!w�T and r!w�F are the specified temperature part and
specified heat flux part of the boundary condition, respectively. The
dimensionless radiative, conductive and total heat fluxes are
calculated as follows:

q*Rð r!wÞ ¼ qR=
�
sT4ref

�
¼
XM
n¼1

�
I
�
r!w; s!n��nw$ s!n�wn���sT4ref �

(A5)

q*c ¼ qc=
�
sT4ref

�
¼ �4NCRVq (A6)

q*T ð r!wÞ ¼ q*C þ q*R (A7)

where the superscripts R, C and T are abbreviations for radiation,
conduction and total heat flux, respectively.
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